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High dimensionality as an organizing device for classical fluids
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The Mayer diagrammatic expansion for a classical pair-interacting fluid in thermal equilibrium is cast in a
form particularly appropriate to high-dimensional space. At asymptotically high dimensionality, the series,
when it converges, is dominated by a single term. Focusing upon repulsive interactions, the dominant term
belongs to a ring diagram and can have either sign, but when negative, the series must diverge. The nature of
the divergence is found explicitly for hard core interactions, and analytic extension in density obtained by
summing up the dominant ring contributions. The result is that a second virial truncation remains valid at
densities much higher than that at which the series diverges. Corrections first appear in the vicinity of a particle
volume-scaled density cﬁ‘(e/Z)l’2 per dimension, and produce a spinodal in the equation of state. Suggestions
are made as to elucidating the resulting phase transijt®t063-651X%99)01509-3

PACS numbeps): 05.20.Gg

[. INTRODUCTION which the ring series diverges. We then sum the ring series
explicitly and find that the second virial form extends far into
: . the high density regime, eventually shifting to an infinite
standard and pqwerful technlqge for apalyzm_g the thermoE:ompressibility spinodal. A preliminary assessment of the
dynamic properties of low density classical fluids. However,.,,, phase appearing beyond the spinodal is carried out, as
it is of questionable utility for examining thermodynamics, \ye|l as an indication of how the next order in the high-

one imagines density measured in units of interaction range,

limiting high density situations often have special properties
which simplify their treatment. Soft long-range repulsive in-
teractions give rise to a crystal lattice with simple normal In order to study the effect of high spatial dimensionality
mode deviation$1]. For Coulomb forces, of effectively in- in the simplest context, we will restrict our attention to a
finite range, the virial coefficients diverge, requiring resum-uniform isotropic simple classical fluid in volumé, with
mation of the density serig®], not to a MacLaurin expan- pair interactiong(r;;); r;; is theD-dimensional interparticle
sion, dominated by the initially most divergent terms.vector, and only its magnitude enters ing® For such a
Another limiting situation which has been considered on aSystem, we have the familiar Mayer diagrammatic expansion
number of occasion8—6] is that of high spatial dimension- [7], prototypically that of the Helmholtz free energy

ality which, as we will see, does correspond to high density

The virial series, or MacLaurin expansion in density, is a

II. VIRIAL EXPANSION

in the above sense. Here, fluctuations are reduced by high “ons s
effective coordination number, so, e.g., interfaces tend to be ~ BF=| (nin n—n)dr—; s_'g al;la fadr®.
even sharper, and one generally expects clean caricatures of ° S 2.1)

any thermodynamic phenomenology that indeed extends to

higher dimensionality. This is the domain that is the SUbjeC'Here,B is the reciprocal temperature,the particle density,
of the present investigation which, it must be emphasized, igq a=(ij) denotes an unordered particle pair, with
' ]

of a heuristic nature, with suggested rather than proven Conéf(r“):efﬁqﬁ(rij)_ 1 the interaction Mayer function. The
clusions. o '

In summary, after briefly reviewing the relevant Mayer G, stand for distinguishable labeled graphs of Mayer func-

: : 2 . - . tions connecting vertices, with the restriction that at most
expansior} 7] for uniform pair-interacting classical fluids, we

the di i ributi . ¢ in whi honefij bond appears betweerandj, and G is both con-
express thé diagrammatic contributions in a 1orm In WRICNyq a4 a4 free of articulation vertices, those whose removal
dimensionality enters as a parameter, and then carry out

Would destroy the simple connectivity. We are concerned

tentative scaling to permit a stable representation as dlmer\ll\-/ith the thermodynamic limit, in which the system volume

sionality increases. Restricting attention to repulsive interacb comes infinite. In this limit, the intensive or per particle
tions, we see that ring diagrams dominate at each order a ergies are defined; we Wi||’ want to have available those

that, if their sum converges, a single order dominates at felated to specific free energy, chemical potential, compress-

given density. Since ring contributions, e.g., to pressure, arﬁ)i'lity factor, and inverse compressibility. With the notation

negative at even orders greater than 2, convergence cannofs-— . e .
e ; ) . meant to imply that ¢ is fixed at the origin, these are
hold beyond some characteristic density. To examine this Py s g

point in detail, we restrict attention to a fluid of hard spheres o
and show that in fact there are two density regimes: low, for Bf= l E —lnn—1— 2
which the second virial coefficient dominates, and high, for nv §=2

nsfl

s!

S [ e,
Gq aeGg
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o

P If we then sequentially rotatel®™ ", j=1,2,..s—1, so that
Br=go(npf)=Inn-2,

nS*l
p—y g f 1;[ fdrs t, only the firstj components of ¢~ are nonvanishing, this
o s 22 reduces further to

J o os—1
— — -1 -1
Bp/n—nanﬁf—l—sgz g st f [[ f.dre?, Jf(...ri(D),r](D)...)dr(lD)’___,dr(slz)l

aeGg

s—1

d “on
_ 7 4 s—1 =
aﬁp/an—an(nﬁp/n) 1 SZZ s—2!§s fallsfadr :

s—1
];[ SD+l—j) f f("‘ri~r]-'~)

. . . . . . ><|r oo -l |D+1_sdr‘ ceedr
For meaningful comparative results at arbitrarily high di- 11722 s-1s-1 1 s—1s

mensionality, suitable scaling must be adopted, which, how- where 1o for k>]. (2.5
ever, will depend upon our focus at the moment. To start
with, we choose the following, emanating from two sources Second, we extend thth power of the Jacobian determi-
First, we recall the readily verified observatif8] that, in-  nant in Eq.(2.3) or Eq.(2.5) by giving the pair interaction an
dicating dimensionality of the vectarP) by its parenthe- explicit D dependence, specified by
sized superscript and particle number designation by index,
f,=(f,)Psgnf,, wheref,=0. (2.6)
f (1) (D)), gr@) - o .
] s To complete the explicit parametrizationnat this stage
1 of the development, we define the scaled density per dimen-
_ Sp-st1+] (s—1) ,(s—1) sion p by
J ‘ nVpal=pP, (2.7
X|de(r sV, .. rSoY)|Primsdr(sT Y. grsTh
where a is the nominal range of interaction, e.g., for
2.3 short-range forces, the maximum distance at which
whereS; is the surface area ofB-dimensional unit sphere, f.=0.1. Inserting Eq.(2.5) into Eq. (2.2 and reducing
V its volume: the factors I3 %(Spii1-;), Vp by Stirling's
approximation: Vp=(27e/D)??/\nD, 7 'Sp.;_;
~[2eP(d27/D)P V=121 we then have, e.g., the large

is =Vp=7""?(D/2)! (2.4
D P B ' D result

&ﬂ_p:1+ 1 | (s—l)DD(1/4)(s—l)(s+1)/(27T)(1/4)(s—1)(s+2)Bs

where

D
Bs=—2 j 59”( H fa)( H fa) |r1,1‘"rsfl,sfl|D+lisdr1'"drsflla(sfl)D- (2.9
GS S

aeGg aeG

Note that, again by Stirling’s approximation,
Bs=2 (—1)'*"1%IB(Gy),

S

G
n*Pa=(D/2mwe)Y?p. (2.9 D
where B(Gs):f ( I1 |fa|> [rip-reqe P78
aeGg
xd

Hence forp of order 1, we are indeed dealing with a very
high density [p is related to the more usual volume-
normalized density byy=(p/2)P].

ry--drg_,/as 1P, (3.2

In particular,G, andG; have only single configurations, so
I1l. CONVERGENCE OF THE VIRIAL SERIES |G2| = |G3| =1 andB,=0, B;=0 (in our notation,|G3| is
As an entree into the pathology of the expang@®), let ~ the number of pairsy in G). But the signs ofB,,Bs,...
us specialize to the case in which all interactions are repuldepend very much on the nature [gfand the value oD.
sive. Thenf <0, and the second line of E@.8) simplifies  Typically, (ae|fal)|r11-Ts—15-1| will have a single
to maximum
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PPty S0 S () A (G MG P,
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(3.2 (3.5
leading to an arbitrary sharp maximum of the integrand in
Eqg. (3.1 asD— . If the maximum is in the interior of the

allowed domain, a steepest descent evaluation over3he (
variablesr; ; leads to the asymptotic form

If the series(3.5) converges, its qualitative nature at high
D is clear: the single term of maximup® 1M (G,) will
dominate, and as we have seen, this must be among the ring
diagrams at each order Thus, retaining only the potentially
B _wal3) o dominant terms and observing that there are (E2)X)!
B(Gs)=Ap(Gs)D 2IM(Gy)~, 3.3 possible labeled rings of ordes>2, Eq. (3.5 may be re-

whereAp (Gg) is slowly varying inD. But for hard particles, placed by

the maximum will be on the surface of the allowed region, -
replacingf <(5) Gaussiar{second ordermaths of descent by @=1+A (12)[pM(12)1°+ E E(_l)sﬂs;lA (R
ones that are exponentidirst ordey, attaching another fac- n P P =32 S DiTs
tor of D™Y? to Eq. (3.3 for each such relevant variable.

-1 D
Thus Eq.(3.3) is to be replaced by X[p* *M(Rs)]", (3.9

B(Gs)=AD(GS)D*(l’z)(g)D*(l’z)tM(GS)D. (3.4 and hence by the asymptotic

Since each additiondlbond decreases E¢.4) by a factor (Bp/M)*P=max(1,M (12, {p* M(Ry)}). (3.7

of D¥2and does not increadé (B,), it is clear that the set of

ring diagramsR, dominates at each order In any event, But the integral of an open chain ¢f| bonds can only be
incorporating the algebrai® dependence into a single factor decreased by closing it, so tha (R)<M(12)5 1. We
Ap(Gy), Eq.(2.2), say forBp/n, now reads therefore have, subject to convergence, the general result

[Bp/n|*P=1 for p<1/M(12)

M(]_Z) 1/(s—2)

= < i _

pM(12) for 1/M(12) p<m|nS<M(RS))
with s=s; as minimizing value

M ( 12) 1(s1—2)
M(Rsp)

M ( RS) ) 1U(s—syq)

=p* IM(R;) for ( <p<mins(

with s=s, as minimizing value,

- (38

a sequence of analytic breaks in the equation of state. We M (Rg) = 36/(5)%?=0.6440
must examine this point in greater detail.
and so, using only this information, E¢.8) would tell us
IV. HARD SPHERE FLUID that

Let us concentrate on the case of a fluid of hard spheres of 1
diametera, which is thereby the interaction range. Here /1P — for 1<p<1.1163 (at s,~6)
f(r,r)=6(a—|r—r’|), and according to Eq.(2.8), |Bpn[*E=1 P 5 p== !
M(Rg)/(s—1)! is 1/as" ! times the maximums—1 space 0.644p> for p>1.1163.... 4.2
volume of ans-link ring with links of lengtha, i.e., the '
maximum with unit links. One readily finds

for p<1

But the sign of theRg term is negative, so the third line of
Eq. (4.2 would correspond to negative pressure; in fact, if

— __/3\1/2__
M(12)=1, M(Rs)=(3)""=0.8660, Eqg. (4.1 were terminated aRs, one would haves; =5 at
" p=1.1264 and a positive pressure, if B, s;=4 atp
M(R4)=4/(27)7°=0.7698, (41)  =1.1398 and a negative pressure, etc. Hence we expect that

we will find either thats, is an odd integer or thag; — o,
M(Rs)=(5)%%16=0.6988, the signature of a nonconvergent series.
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The fact that an alternating series does not converge says

the crossover indeg;, we would want to extend our evalu- little about the function it is supposed to represent. If we can

ation past that oB(Rg). But the geometry of maximal vol-

sum up the series of dominant ring terms, we will instead

ume rings ins—1 space is daunting, and a more direct Fou-obtain the analytic continuation that constitutes the true lead-

rier evaluation is suggested. Now for atink ring,
s—1
(1] SDHJ-)B(Rs)

- [oa-rnoa-roa-r e poti-r

xdriP)--dri?) =(27T)_DJ79(k)Sdk(D), 4.3
where
Tg(k):f eikrdr(D):f glkr coséq (D)
Irl<1 Irl<1
= (2m/K)®2Jp5(K). (4.4

For assessing the series, we then evaluate

s—1
B(Ry) = S.%’Dllj S j)

1/D
><(277)<1/2)5‘ 1( f ‘]D/2( k)sd k(D)/kSD/ZSD>

1/D
=(D/e)%*! fJD,z(k)SlesD’de) (4.5

for large D, so that, knowing that the integral is positive,
M(Rs)=B(Ry)*P
=(D/e)5/2_1[ma)q( JD/z(k)Zk—(llz)(s—Z)D]l/D_
(4.6)

The maximum in Eq(4.6) will occur somewhere before
the transition to oscillation ofp,,. But in this region, we
have the familiar asymptotic resu®] (large v at fixed «)

(4.7

J,(v secha)~e"@Ma=2)/(2 7y tanha) 2,
Choosingr=D/2, k=D/2 sechn, then
M(Rg) = (D/e)s>1 max, e(32(tanha—a) ooghy (12(s—2)
X(D/Z)—(1/2)(s—2)
_ (Z/e)<1/2)(5—2)ma)%[(es(tanha—a) cosha® 2)12

(4.9

The maximum is achieved af“=s—1, and so we find
M(Rg)=[s"2/(s—1)5 ]2 (4.9

Arguing as we did after Eq3.7), the crossover fop<<1 will
occur at a value ofp given by the minimum oves of
[(s—1)5 Yss~2)V26" D~ exp(1/z)(Ins—1). Hence, as
soon as>1 then dominant terms move 8-, so indeed
the series ceases to converge.

ing order forp>1. This is not hard to do.

V. EFFECT OF RESUMMATION

Let us proceed directly from the original expressi@rp),
now restricted to ring diagranR, of which there are 1 for
s=2, 3(s—1)! for s>2. This of course coincides with the
primitive resummation of Montroll and May¢f.0], without
the renormalization introduced by Greddl]. Focusing
upon the expression for the chemical potengiathis time,
we have, sincd fdr®=—VpaP,

Bu=Inn+pP—1> ns 1fe*(0), (5.)
s=3

where f©® denotes the iterated convolution sffactorsf.
Noting thatf(®* (0)=VpaP® as well, we therefore have

Bu=1 £ 20
=Inn+—-pP—=
K 27 T2 2mP

J nf(k)2/[1—nf(k)]dkP

kP~ldk. (5.2

3 1 S fx nf(k)2

=Inn+—pP—— —
20 22mP Jo1-nfKk

But T(k) = —8(ka)aP = — (27a/k)?"2Jp5(ka), so that Eq.
(5.2) becomes

D o Jpia(k)? dk

— —pP—— P
Bu=Inn+ 5P TSP jo 1+ (p°IVp)(2mIK)Ipa(K) K
(5.3

We are interested in the domain>1. We note first that
(2m)P"2(pPIVp)k~P23p5(K) has its maximum op® at k
=0, so that, as expected, the reciprocal cannot be expanded
in p when p>1. However, we also note that
(2m)P2IVpk P23 5(k) has its (negativé absolute mini-
mum  at KoJp(Ko) =(D/2)Ipj(Ko), OF Jppos1(Ko) =0,
yielding asymptoticallyk,=D/2+ zo(D/2)Y3+ 1+ O(1/D),
with z;=1.8558, and that the minimum is then given by
—mp, Where
mp=1.148 2/e)P/2D ~ L6g~ 147D, (5.4)
This tells us not to expect any singular behavior until
pPmp~1 or p~py where
- e 1/2
po=mg 1~ (5) (5.5

To find the behavior of Eq5.3) in detail, we need control
over high index Bessel functions, and the uniform leading
asymptotic formg12] (Ai is the Airy function)

2/3)

12 a—tanha
Jy(v secha)= V2 @nfa

1/6
Ai( {7(a—tanha)
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(5.6

certainly suffice. For most purposes, the reductions to low

argument, transition region, and large argument,

J, (v secha) ~eV(@Ma=a) /(2 7y tanha) Y2,

(5.79

J,(v+zviB) ~ (2n) A (— 213%), (5.7

ar
J, (v secha)~2 coS(v(tana— a)— Z) / (2m7tana)*?,
(5.70

are good enough.

To start, one has, using E@5.7@—identical with Eq.

(4.7—
| _DJD’Z Jppa(k)? dk
T2 Jo 1+(p°IVp)(2m/K)PPIp (k) Kk
D (D2 )
<§fo Jop(k)2dkik
1 %
— eD(a—tanha)da:O(D—llii), (58)
2 0

so thatl _ can be dropped. To continue, we need

| _wa Jpia(k)? dk
"7 2 Jorn 1+ (pPIVp) (27l k)PPIp (k) k-

D ©
:—f Jpia(K)2dk/k
2 Jor

D pP o2 [© Joia(k)®
-5 (27 5) A
2 Vyq prz L+ (p~1Vp)(27/K)="“Jpo(K)
dk
XW . (5'9)

But, using Eq.(5.70,

D (= 5
|0:§fD/2JD/2(k) dk/k

2 fﬂ/Z 2 D T d

p . co E(tana a) 7/de

1 (=n/2
=—f [1+sinD(tana— «a)]da
mJo

1
=5+0(D~ ).

5 (5.10
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Hence, toO(D ~3,P),

Bu=Inn+pP+pPi
E (27T)D/2 5
2

where | = Vo p
f“’ Jpia(k)® dk
b2+ (PP IV p) (27/K) P () KT
(5.11)
Clearly,

|||g[(zw)DIZ/VD]/(l_mDPD)fDlzlJDIZ(k)|3de/2

D
<(4m/D)P"? C—DmaAJDm(k)P/(l—mDpD),

but from the second of Eq$5.6), together with|Ai( —x)|

<(%)¥3for x>0, we see thal, (v seca)<(1/2v)*>. Hence,
evaluatingVp in Stirling approximation, we find

D
1_(3) |
Po

5

In other words, the second virial truncation of E&.11)
remains valid for X p<(1—€)(e/2)*?), an enormously en-
hanced range of density.

[l|<=/D 0.871D1/661'47331/3(p/p0)D/

VI. INCEPTION OF PHASE TRANSITION

Finally, we must attend to the behavior of the hard sphere
fluid asp approacheg,. As we have seen, it is only when
po— p=0(1/D) that a deviation from the second virial result
can appear. To evaluatef Eq. (5.11), let us first reverse the
procedure from Eq(5.9) to Eq.(5.11) and write

-D = pD 20 D/2
IZTJ Jpra(k)? ( )
D

-1
XJD,Z(k)} —1]dk/k.

(6.1
Then, setkk=(D/2)seca, so that Eq(5.7¢ can be used:

I 2J‘11'/2d § D T
- . @ Co f(tana ) 7

p —-DJ/2
X{ 14 — — —COSa) cot?a
[ JymD Vo | D
X b t il B 1
co 5( ana— a) 7 .

Since cofD/2)(tana— a)— w/4]~ cog(D/6)a’— /4] first
goes negative whea®>97/2D, this produces a small con-
centrated negative maximum due to the rapid falloff of-

D(47T

(6.2
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co’? a~exp—(D/4)e?, and the next maximum has a neg- (5.11) by performing a principal part integration, and then
ligible contribution for the same reason. The only contribu-continue to the second spinodal. Or, it is certainly possible,
tion to | comes from thea~D ~2 region, and so we can but not trivial, to sum the next ordeR 2 lower in magni-

rewrite Eq.(6.2) as tude, of diagrams with a single path across a ring, and indeed
it appears that this would reverse the sign of the ultimate

-2 (=2 D , = 2 [2\P~? pressure singularity, producing a van der Waals loop in the

I= = Jo COSZ(ga 2 1+ P (g process. This may be justified as an effective analytic con-

tinuation in density but is not fully satisfactory since it could
1 not change the location of the infinite pressure singularity,
—1]da- (6.3 which in reality should not occur until close packing. An
alternative systematic approach addressing this issue would
“simply” resum the dominant terms contributing to the di-
vergence ap=pg, and we plan to report on this strategy in

X pPe~(D4a® cos( % a’— ;)

The region around® ~* only contributes when the denomi-
nator is very small. Expandinga=ay+e, about «g

=(97/2D)¥® we can write future.
2 (D 2)2 VIl. CONCLUDING REMARKS
== )z

We have investigated the Mayer expansion mainly for

2\ D72 uniform pair-interacting repulsive interactions subject to a

1- Da%’z( —) dimensionality-dependent scaling. As the dimensionality be-
comes large, we have establish@dhot prover) at least for

X 62[

D (DM} . (DI atge -1 repulsive interactions that ring diagrams dominate at each
Xp-e e~ —1 de, (6.4 order. If their sum converges, a single order dominates at
each density. Since even ring contributions, of order greater
and further expandings= ey+ 7, aboute,=2/Day, than 2, to the pressure are negative, there must be a density

beyond which the sum can no longer converge.

—2a2 p\P , 2 ,]°1 To investigate this behavior in greater detail, we have
| = OJ Hl_ (_,) e~ (18D%agy } - 1]d7, restricted ourselves to a fluid of hard spheres, for which ex-
7" Po plicit calculations are easier. One finds here that the equation

of state reduces asymptotically to two regimes. At low den-

D/2 . . . .
e e 2 sity, the ideal gas equation of state is augmented by the
_ 1/3 nD_ |~ (D/4) e o O . . "
where ag=(97/2D)"",  (pg) (2) _rza(l)ze % dominating second virial coefficient. At higher densities, the

(6.5 ring series diverges, but one can sum the series explicitly and
evaluate it by steepest descent. The second virial form of the
Thus, |1=(4v2aq/mwD)(plpH)P ox Y2dxi[e*—(p/ps)P],  equation of state then extends significantly far into the high

integrating forp/p{~1 to density region, until an infinite compressibility spinodal is
found.
| ~—(4V2Zao/D)(plpy)PI 11— (plpH)PTH2  (6.6) The next contribution, ring diagrams with one cross-path,

is of opposite sign and suggests an upturning in the plot of
which supplies the evaluation of E¢.11). The parameter '€duced pressure versus scaled density reminiscent of a true
pl is of course an approximation o, of Egs. (5.4) and first order transition to the h|gh_-d|men5|onal solid. While we
(5.5). have not garr!ed out jch.e considerable Ie_lbpr to evaluate this
The result(5.11), (6.6) is striking. Despite thgoscilla- next contribution explicitly for Igrge but finit®, our calcu- .
tory) divergence of the density expansion, the second virial2ions suggest that at a density less than that of the Kirk-
truncation remains valid untji is very close tg,. This is of ~ W00d transition(see, e.g., Refl4]), a first order transition

course not restricted to hard core repulsive interactions. Thg_;]_tervenes. Onl_y_ in the "!’“'t a@_’oo. does Fhe contu_fluous
crucial point is that although the series expansion o irkwood transition dominate. An interesting special case

~ . . . for investigation is the Gaussian potential fluid for lafge
U (1-nf(k)] in Eq. (5.2 for repulsive forces diverges as which has already been investigated to some extent by Still-

soon as>1/f(0)|=1/f(1—e #*)dr, the resulting con-  jnger[13].

tribution in excess of the second virial becomes very small The scaling introduced in Eq$2.1)—(2.4) should also
due to the smallness dfk)? over the rest ok space, untih  allow us to obtain similar asymptotic results for attractive
approaches mji/f(k)], at which point a branch point typi- Potentials. In any case, it is of interest to speculate that for
Ca”y occurs. The resu“jng singu]arity, Signa”ng a phaséarge but flnlteD, there are, universally, first order transitions
transition, was previously suggested, on the basis of stabilitpf uniform classical fluids.

arguments, by indirect means some years ago, but now we
have a direct explicit verification.

Past the first spinodal, care must be exercised. One may
ignore the infinite negative value ofat p=py as occurring This work was supported in part by NSF Grant Nos.
in the inaccessible van der Waals loop region, regularize th®MR 962 8224 and CHE 970 8562, and the Donors of the
subsequent two-point vanishing of the denominator of EqPetroleum Fund of the American Chemical Society.
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