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High dimensionality as an organizing device for classical fluids
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The Mayer diagrammatic expansion for a classical pair-interacting fluid in thermal equilibrium is cast in a
form particularly appropriate to high-dimensional space. At asymptotically high dimensionality, the series,
when it converges, is dominated by a single term. Focusing upon repulsive interactions, the dominant term
belongs to a ring diagram and can have either sign, but when negative, the series must diverge. The nature of
the divergence is found explicitly for hard core interactions, and analytic extension in density obtained by
summing up the dominant ring contributions. The result is that a second virial truncation remains valid at
densities much higher than that at which the series diverges. Corrections first appear in the vicinity of a particle
volume-scaled density of12 (e/2)1/2 per dimension, and produce a spinodal in the equation of state. Suggestions
are made as to elucidating the resulting phase transition.@S1063-651X~99!01509-3#
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I. INTRODUCTION

The virial series, or MacLaurin expansion in density, is
standard and powerful technique for analyzing the therm
dynamic properties of low density classical fluids. Howev
it is of questionable utility for examining thermodynamic
and thermodynamic singularities, arising at higher density
one imagines density measured in units of interaction ran
limiting high density situations often have special propert
which simplify their treatment. Soft long-range repulsive i
teractions give rise to a crystal lattice with simple norm
mode deviations@1#. For Coulomb forces, of effectively in
finite range, the virial coefficients diverge, requiring resu
mation of the density series@2#, not to a MacLaurin expan
sion, dominated by the initially most divergent term
Another limiting situation which has been considered on
number of occasions@3–6# is that of high spatial dimension
ality which, as we will see, does correspond to high den
in the above sense. Here, fluctuations are reduced by
effective coordination number, so, e.g., interfaces tend to
even sharper, and one generally expects clean caricatur
any thermodynamic phenomenology that indeed extend
higher dimensionality. This is the domain that is the subj
of the present investigation which, it must be emphasized
of a heuristic nature, with suggested rather than proven c
clusions.

In summary, after briefly reviewing the relevant May
expansion@7# for uniform pair-interacting classical fluids, w
express the diagrammatic contributions in a form in wh
dimensionality enters as a parameter, and then carry o
tentative scaling to permit a stable representation as dim
sionality increases. Restricting attention to repulsive inter
tions, we see that ring diagrams dominate at each order
that, if their sum converges, a single order dominates a
given density. Since ring contributions, e.g., to pressure,
negative at even orders greater than 2, convergence ca
hold beyond some characteristic density. To examine
point in detail, we restrict attention to a fluid of hard sphe
and show that in fact there are two density regimes: low,
which the second virial coefficient dominates, and high,
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which the ring series diverges. We then sum the ring se
explicitly and find that the second virial form extends far in
the high density regime, eventually shifting to an infini
compressibility spinodal. A preliminary assessment of
new phase appearing beyond the spinodal is carried ou
well as an indication of how the next order in the hig
dimensional expansion can be expected to contribute.

II. VIRIAL EXPANSION

In order to study the effect of high spatial dimensional
in the simplest context, we will restrict our attention to
uniform isotropic simple classical fluid in volumeV, with
pair interactionf(r i j ); r i j is theD-dimensional interparticle
vector, and only its magnitude enters intof. For such a
system, we have the familiar Mayer diagrammatic expans
@7#, prototypically that of the Helmholtz free energy

bF5E ~n ln n2n!dr2(
s52

`
ns

s! (
Gs

E )
aeGs

f adrs.

~2.1!

Here,b is the reciprocal temperature,n the particle density,
and a5( i j ) denotes an unordered particle pair, withf i j

5 f (r i j )5e2bf(r i j )21 the interaction Mayer function. The
Gs stand for distinguishable labeled graphs of Mayer fun
tions connectings vertices, with the restriction that at mos
one f i j bond appears betweeni and j, andGs is both con-
nected and free of articulation vertices, those whose remo
would destroy the simple connectivity. We are concern
with the thermodynamic limit, in which the system volum
becomes infinite. In this limit, the intensive or per partic
energies are defined; we will want to have available th
related to specific free energy, chemical potential, compre
ibility factor, and inverse compressibility. With the notatio
drs21 meant to imply thatr s is fixed at the origin, these ar

b f 5
1

n

bF

V
5 ln n212(

s52

`
ns21

s! (
Gs

E )
aeGs

f adrs21,
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bm5
]

]n
~nb f !5 ln n2(

s52

`
ns21

s21! (Gs

E )
Gs

f adrs21,

~2.2!

bp/n5n
]

]n
b f 512(

s52

`
s21

s!
ns21(

Gs

E )
aeGs

f adrs21,

]bp/]n5
]

]n
~nbp/n!512(

s52

`
ns21

s22! (Gs

E )
aeGs

f adrs21.

For meaningful comparative results at arbitrarily high
mensionality, suitable scaling must be adopted, which, h
ever, will depend upon our focus at the moment. To s
with, we choose the following, emanating from two sourc
First, we recall the readily verified observation@8# that, in-
dicating dimensionality of the vectorr (D) by its parenthe-
sized superscript and particle number designation by ind

E f ~¯r i
~D !

•r j
~D !

¯ !dr1
~D !

¯drs21
~D !

5)
j 51

s21 S SD2s111 j

Sj
D E f ~¯r i

~s21!
•r j

~s21!
¯ !

3udet~r 1
~s21! ,...,r s21

~s21!!uD112sdr1
~s21!

¯drs21
~s21! ,

~2.3!

whereSD is the surface area of aD-dimensional unit sphere
V its volume:

1

D
SD5VD5pD/2/~D/2!!. ~2.4!
ry
-

pu
-
rt
.

,

If we then sequentially rotater j
(s21) , j 51,2,...,s21, so that

only the first j components ofr j
(s21) are nonvanishing, this

reduces further to

E f ~¯r i
~D !

•r j
~D !

¯ !dr1
~D ! ,...,drs21

~D !

5S )
1

s21

SD112 j D E f ~¯r i•r j¯ !

3ur 1,1,r 2,2¯r s21,s21uD112sdr1¯drs21 ,

where r j ,k50 for k. j . ~2.5!

Second, we extend theDth power of the Jacobian determ
nant in Eq.~2.3! or Eq.~2.5! by giving the pair interaction an
explicit D dependence, specified by

f a5~ f̂ a!D sgnf a , where f̂ a>0. ~2.6!

To complete the explicit parametrization inD at this stage
of the development, we define the scaled density per dim
sion r by

nVDaD5rD, ~2.7!

where a is the nominal range of interaction, e.g., fo
short-range forces, the maximum distance at wh
f̂ a50.1. Inserting Eq.~2.5! into Eq. ~2.2! and reducing
the factors P1

s21(SD112 j ), VD by Stirling’s
approximation: VD5(2pe/D)D/2/ApD, P i

s21SD112 j

;@2eD(d2p/D)D21/2s#1/2(s21), we then have, e.g., the larg
D result
]bp

]n
511(

s52

`
1

s22!
r~s21!DD ~1/4!~s21!~s11!/~2p!~1/4!~s21!~s12!Bs ,

where

Bs52(
Gs

E sgnS )
aeGs

f aD S )
aeGs

f̂ aD D

ur 1,1¯r s21,s21uD112sdr1¯drs21 /a~s21!D . ~2.8!
o

Note that, again by Stirling’s approximation,

n1/Da5~D/2pe!1/2r. ~2.9!

Hence forr of order 1, we are indeed dealing with a ve
high density @r is related to the more usual volume
normalized density byh5(r/2)D#.

III. CONVERGENCE OF THE VIRIAL SERIES

As an entree into the pathology of the expansion~2.8!, let
us specialize to the case in which all interactions are re
sive. Thenf a<0, and the second line of Eq.~2.8! simplifies
to
l-

Bs5(
Gs

~21!11uGsuB~Gs!,

where B~Gs!5E S )
aeGs

u f au D D

ur 1,1¯r s21,s21uD112s

3dr1¯drs21 /a~s21!D. ~3.1!

In particular,G2 andG3 have only single configurations, s
uG2u5uG3u51 andB2>0, B3>0 ~in our notation,uG3u is
the number of pairsa in Gs). But the signs ofB4 ,B5 ,...
depend very much on the nature ofufu and the value ofD.
Typically, (PaeGs

u f au)ur 1,1¯r s21,s21u will have a single
maximum
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M ~G2!5maxr 1,...,r s21S )
aeGs

u f au D ur 1,1̄ r s21,s21u/as21,

~3.2!

leading to an arbitrary sharp maximum of the integrand
Eq. ~3.1! asD→`. If the maximum is in the interior of the
allowed domain, a steepest descent evaluation over the2

s)
variablesr i , j leads to the asymptotic form

B~Gs!5AD~Gs!D
2~1/2! S s

2DM ~Gs!
D, ~3.3!

whereAD (Gs) is slowly varying inD. But for hard particles,
the maximum will be on the surface of the allowed regio
replacingf ,(2

s) Gaussian~second order! paths of descent by
ones that are exponential~first order!, attaching another fac
tor of D21/2 to Eq. ~3.3! for each such relevant variable
Thus Eq.~3.3! is to be replaced by

B~Gs!5AD~Gs!D
2~1/2! S s

2DD2~1/2!tM ~Gs!
D. ~3.4!

Since each additionalf bond decreases Eq.~3.4! by a factor
of D1/2 and does not increaseM (Bs), it is clear that the set o
ring diagramsRs dominates at each orders. In any event,
incorporating the algebraicD dependence into a single facto
AD(Gs), Eq. ~2.2!, say forbp/n, now reads
W

s
re
n

,

bp

n
511(

s52

`
s21

s! (
Gs

~21!11uGsuAD~Gs!@rs21M ~Gs!#
D.

~3.5!

If the series~3.5! converges, its qualitative nature at hig
D is clear: the single term of maximumrs21M (Gs) will
dominate, and as we have seen, this must be among the
diagrams at each orders. Thus, retaining only the potentially
dominant terms and observing that there are (1/2)(s21)!
possible labeled rings of orders.2, Eq. ~3.5! may be re-
placed by

bp

n
511AD~12!@rM ~12!#D1(

s53

`
1

2
~21!s11

s21

s
AD~Rs!

3@rs21M ~Rs!#
D, ~3.6!

and hence by the asymptotic

~bp/n!1/D5maxs„1,rM ~12!, $rs21M ~Rs!%…. ~3.7!

But the integral of an open chain ofu f u bonds can only be
decreased by closing it, so thatM (Rs),M (12)s21. We
therefore have, subject to convergence, the general resu
ubp/nu1/D51 for r,1/M ~12!

5rM ~12! for 1/M ~12!,r,minsS M ~12!

M ~Rs!
D 1/~s22!

with s5s1 as minimizing value

5rs121M ~Rs1
! for S M ~12!

M ~Rs1
! D 1/~s122!

,r,minsS M ~Rs!

M ~Rs!
D 1/~s2s1!

with s5s2 as minimizing value,

¯ , ~3.8!
f
if

that
a sequence of analytic breaks in the equation of state.
must examine this point in greater detail.

IV. HARD SPHERE FLUID

Let us concentrate on the case of a fluid of hard sphere
diameter a, which is thereby the interaction range. He
f̂ (r ,r 8)5u(a2ur 2r 8u), and according to Eq. ~2.8!,
M (Rs)/(s21)! is 1/as21 times the maximums21 space
volume of ans-link ring with links of length a, i.e., the
maximum with unit links. One readily finds

M ~12!51, M ~R3!5~ 3
4 !1/250.8660,

M ~R4!54/~27!1/250.7698, ~4.1!

M ~R5!5~5!3/2/1650.6988,
e

of

M ~R6!536/~5!3/250.6440

and so, using only this information, Eq.~3.8! would tell us
that

ubp/nu1/D5H 1 for r,1
r for 1,r,1.1163 ~at s156!

0.6440r5 for r.1.1163,... .
~4.2!

But the sign of theR6 term is negative, so the third line o
Eq. ~4.2! would correspond to negative pressure; in fact,
Eq. ~4.1! were terminated atR5 , one would haves155 at
r51.1264 and a positive pressure, if atR4 , s154 at r
51.1398 and a negative pressure, etc. Hence we expect
we will find either thats1 is an odd integer or thats1→`,
the signature of a nonconvergent series.
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In order to check whether there is indeed a finite value
the crossover indexs1 , we would want to extend our evalu
ation past that ofB(R6). But the geometry of maximal vol
ume rings ins21 space is daunting, and a more direct Fo
rier evaluation is suggested. Now for ans-link ring,

S )
1

s21

SD112 j D B~Rs!

5E u~12r 1!u~12r 12!¯u~12r s22,s21!u~12r s21!

3dr1
~D !

¯drs21
~D ! 5~2p!2DE ũ~k!sdk~D !, ~4.3!

where

ũ~k!5E
ur u<1

eikrdr ~D !5E
ur u<1

eikr cosudr ~D !

5~2p/k!D/2JD/2~k!. ~4.4!

For assessing the series, we then evaluate

B~Rs!5S SD
1/D/)

1

s21

SD112 j
1/D D

3~2p!~1/2!s21S E JD/2~k!sdk~D !/ksD/2SD D 1/D

5~D/e!S/221S E JD/2~k!skD212sD/2dkD 1/D

~4.5!

for largeD, so that, knowing that the integral is positive,

M ~Rs!5B~Rs!
1/D

5~D/e!s/221@maxk JD/2~k!2k2~1/2!~s22!D#1/D.

~4.6!

The maximum in Eq.~4.6! will occur somewhere before
the transition to oscillation ofJD/2 . But in this region, we
have the familiar asymptotic result@9# ~largen at fixeda!

Jn~n secha!;en~ tanha22!/~2pn tanha!1/2. ~4.7!

Choosingn5D/2, k5D/2 secha, then

M ~Rs!5~D/e!s/221 maxa e~3/2!~ tanha2a! cosha~1/2!~s22!

3~D/2!2~1/2!~s22!

5~2/e!~1/2!~s22!maxa~es~ tanha2a! coshas22!1/2.

~4.8!

The maximum is achieved ate2a5s21, and so we find

M ~Rs!5@ss22/~s21!s21#1/2. ~4.9!

Arguing as we did after Eq.~3.7!, the crossover forr,1 will
occur at a value ofr given by the minimum overs of
@(s21)s21/ss22#1/2(s21);exp(1/2s)(ln s21). Hence, as
soon asr.1 then dominant terms move tos5`, so indeed
the series ceases to converge.
r

-

The fact that an alternating series does not converge
little about the function it is supposed to represent. If we c
sum up the series of dominant ring terms, we will inste
obtain the analytic continuation that constitutes the true le
ing order forr.1. This is not hard to do.

V. EFFECT OF RESUMMATION

Let us proceed directly from the original expression~2.2!,
now restricted to ring diagramsRs , of which there are 1 for
s52, 1

2 (s21)! for s.2. This of course coincides with th
primitive resummation of Montroll and Mayer@10#, without
the renormalization introduced by Green@11#. Focusing
upon the expression for the chemical potentialm this time,
we have, since* f drD52VDaD,

bm5 ln n1rD2 1
2 (

s53

`

ns21f ~s!* ~0!, ~5.1!

where f (s)* denotes the iterated convolution ofs factors f.
Noting that f (2)* (0)5VDaD as well, we therefore have

bm5 ln n1
3

2
rD2

1

2

1

~2p!D E n f̃~k!2/@12n f̃~k!#dkD

5 ln n1
3

2
rD2

1

2

SD

~2p!D E
0

` n f̃~k!2

12n f̃~k!
kD21dk. ~5.2!

But f̃ (k)52 ũ(ka)aD52(2pa/k)D/2JD/2(ka), so that Eq.
~5.2! becomes

bm5 ln n1
3

2
rD2

D

2
rDE

0

` JD/2~k!2

11~rD/VD!~2p/k!JD/2~k!

dk

k
.

~5.3!

We are interested in the domainr.1. We note first that
(2p)D/2(rD/VD)k2D/2JD/2(k) has its maximum ofrD at k
50, so that, as expected, the reciprocal cannot be expan
in r when r.1. However, we also note tha
(2p)D/2/VDk2D/2JD/2(k) has its ~negative! absolute mini-
mum at k0JD/28 (k0)5(D/2)JD/2(k0), or JD/211(k0)50,
yielding asymptoticallyk05D/21z0(D/2)1/3111O(1/D),
with z051.8558, and that the minimum is then given b
2mD , where

mD51.148~2/e!D/2D21/6e21.473D1/3
. ~5.4!

This tells us not to expect any singular behavior un
rDmD;1 or r;r0 where

r05md
21/d;S e

2D 1/2

. ~5.5!

To find the behavior of Eq.~5.3! in detail, we need contro
over high index Bessel functions, and the uniform lead
asymptotic forms@12# ~Ai is the Airy function!

Jv~v secha!5S 12

v2

a2tanha

tanh3 a D 1/6

Ai S F3v
2

~a2tanha!G2/3D ,
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Jv~v seca!5S 12

v2

tana2a

tan3 a D 1/6

Ai S 2F3v
2

~ tana2a!G2/3D
~5.6!

certainly suffice. For most purposes, the reductions to
argument, transition region, and large argument,

Jv~v secha!;ev~ tanha2a!/~2pv tanha!1/2, ~5.7a!

Jv~v1zv1/3!;~2/v !1/3Ai ~221/3z!, ~5.7b!

Jv~v secha!;2 cosS v~ tana2a!2
p

4 D Y ~2ptana!1/2,

~5.7c!

are good enough.
To start, one has, using Eq.~5.7a!—identical with Eq.

~4.7!—

I 25
D

2 E
0

D/2 JD/2~k!2

11~rD/VD!~2p/k!D/2JD/2~k!

dk

k

,
D

2 E
0

D/2

JD/2~k!2dk/k

;
1

2p E
0

`

eD~a2tanha!da5O~D21/3!, ~5.8!

so thatI 2 can be dropped. To continue, we need

I 15
D

2 E
D/2

` JD/2~k!2

11~rD/VD!~2p/k!D/2JD/2~k!

dk

k

5
D

2 E
D/2

`

JD/2~k!2dk/k

2
D

2

rD

Vd
~2p!D/2E

D/2

` JD/2~k!3

11~rD/VD!~2p/k!D/2JD/2~k!

3
dk

k11D/2 . ~5.9!

But, using Eq.~5.7c!,

I 05
D

2 E
D/2

`

JD/2~k!2dk/k

;
2

p E
0

p/2

cos2S D

2
~ tana2a!2

p

4 Dda

5
1

p E
0

p/2

@11sinD~ tana2a!#da

5
1

2
1O~D21/3!. ~5.10!
w

Hence, toO(D21/3rD),

bm5 ln n1rD1rDI

where I 5
D

2

~2p!D/2

VD
rD

3E
D/2

` JD/2~k!3

11~rD/VD!~2p/k!D/2JD/2~k!

dk

k11D/2 .

~5.11!

Clearly,

uI u<@~2p!D/2/VD#/~12mDrD!E
D/2

`

uJD/2~k!u3dkD/2

<~4p/D !D/2
rD

VD
maxuJD/2~k!u3/~12mDrD!,

but from the second of Eqs.~5.6!, together withuAi( 2x)u
,( 1

4 )1/3 for x.0, we see thatJv(v seca),(1/2v)1/3. Hence,
evaluatingVD in Stirling approximation, we find

uI u<Ap/D 0.871D1/6e1.473D1/3
~r/r0!DY F12S r

r0
D DG .
~5.12!

In other words, the second virial truncation of Eq.~5.11!
remains valid for 1,r,(12e)(e/2)1/2), an enormously en-
hanced range of density.

VI. INCEPTION OF PHASE TRANSITION

Finally, we must attend to the behavior of the hard sph
fluid asr approachesr0 . As we have seen, it is only whe
r02r5O(1/D) that a deviation from the second virial resu
can appear. To evaluateI of Eq. ~5.11!, let us first reverse the
procedure from Eq.~5.9! to Eq. ~5.11! and write

I 5
2D

2 E
D/2

`

JD/2~k!2H F11
rD

VD
S 2p

k D D/2

3JD/2~k!G21

21J dk/k. ~6.1!

Then, setk5(D/2)seca, so that Eq.~5.7c! can be used:

I 52
2

p E
0

p/2

da cos2S D

2
~ tana2a!2

p

4 D
3H F11

2

ApD

rD

VD
S 4p

D
cosa D 2D/2

cot1/2a

3cosS D

2
~ tana2a!2

p

4 D G21

21J . ~6.2!

Since cos@(D/2)(tana2a)2p/4#;cos@(D/6)a32p/4# first
goes negative whena3.9p/2D, this produces a small con
centrated negative maximum due to the rapid falloff o
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cosD/2 a;exp2(D/4)a2, and the next maximum has a ne
ligible contribution for the same reason. The only contrib
tion to I comes from thea;D21/3 region, and so we can
rewrite Eq.~6.2! as

I 5
22

p E
0

p/2

cos2S D

6
a32

p

4 D H F11
2

a1/2 S 2

eD D/2

3rDe2~D/4!a2
cosS D

6
a32

p

4 D G21

21J da. ~6.3!

The region aroundD21/3 only contributes when the denom
nator is very small. Expanding,a5a01e, about a0
5(9p/2D)1/3 we can write

I 5
22

p E S D

2
a0

2D 2

3e2H F12Da0
3/2S 2

eD D/2

3rDe2~D/4!a0
2
ee~D/2!a0eG21

21J de, ~6.4!

and further expanding,e5e01h, aboute052/Da0 ,

I 5
22a0

2

p E H F12S r

r08
D D

e2~1/8!D2a0
2h2G21

21J dh

where a05~9p/2D !1/3, ~r08!D5S e

2D D/2 e

2a0
1/2e2~D/4!a0

2
.

~6.5!

Thus, I 5(4&a0 /pD)(r/r08)
D*0

`x21/2dx/@ex2(r/r08)
D#,

integrating forr/r08;1 to

I;2~4&a0 /D !~r/r08!D/@12~r/r08!D#1/2, ~6.6!

which supplies the evaluation of Eq.~5.11!. The parameter
r08 is of course an approximation tor0 of Eqs. ~5.4! and
~5.5!.

The result~5.11!, ~6.6! is striking. Despite the~oscilla-
tory! divergence of the density expansion, the second vi
truncation remains valid untilr is very close tor0 . This is of
course not restricted to hard core repulsive interactions.
crucial point is that although the series expansion
1/@(12n f̃(k)# in Eq. ~5.2! for repulsive forces diverges a
soon asn.1/u f̃ (0)u51/*(12e2bf(r ))dr, the resulting con-
tribution in excess of the second virial becomes very sm
due to the smallness off̃ (k)2 over the rest ofk space, untiln
approaches min@1/f̃ (k)#, at which point a branch point typi
cally occurs. The resulting singularity, signaling a pha
transition, was previously suggested, on the basis of stab
arguments, by indirect means some years ago, but now
have a direct explicit verification.

Past the first spinodal, care must be exercised. One
ignore the infinite negative value ofI at r5r0 as occurring
in the inaccessible van der Waals loop region, regularize
subsequent two-point vanishing of the denominator of
-

l

e
f

ll

e
ty
e

ay

e
.

~5.11! by performing a principal part integration, and the
continue to the second spinodal. Or, it is certainly possib
but not trivial, to sum the next order,D21/2 lower in magni-
tude, of diagrams with a single path across a ring, and ind
it appears that this would reverse the sign of the ultim
pressure singularity, producing a van der Waals loop in
process. This may be justified as an effective analytic c
tinuation in density but is not fully satisfactory since it cou
not change the location of the infinite pressure singular
which in reality should not occur until close packing. A
alternative systematic approach addressing this issue w
‘‘simply’’ resum the dominant terms contributing to the d
vergence atr5r0 , and we plan to report on this strategy
future.

VII. CONCLUDING REMARKS

We have investigated the Mayer expansion mainly
uniform pair-interacting repulsive interactions subject to
dimensionality-dependent scaling. As the dimensionality
comes large, we have established~if not proven! at least for
repulsive interactions that ring diagrams dominate at e
order. If their sum converges, a single order dominates
each density. Since even ring contributions, of order gre
than 2, to the pressure are negative, there must be a de
beyond which the sum can no longer converge.

To investigate this behavior in greater detail, we ha
restricted ourselves to a fluid of hard spheres, for which
plicit calculations are easier. One finds here that the equa
of state reduces asymptotically to two regimes. At low de
sity, the ideal gas equation of state is augmented by
dominating second virial coefficient. At higher densities, t
ring series diverges, but one can sum the series explicitly
evaluate it by steepest descent. The second virial form of
equation of state then extends significantly far into the h
density region, until an infinite compressibility spinodal
found.

The next contribution, ring diagrams with one cross-pa
is of opposite sign and suggests an upturning in the plo
reduced pressure versus scaled density reminiscent of a
first order transition to the high-dimensional solid. While w
have not carried out the considerable labor to evaluate
next contribution explicitly for large but finiteD, our calcu-
lations suggest that at a density less than that of the K
wood transition~see, e.g., Ref.@4#!, a first order transition
intervenes. Only in the limit asD→` does the continuous
Kirkwood transition dominate. An interesting special ca
for investigation is the Gaussian potential fluid for largeD,
which has already been investigated to some extent by S
inger @13#.

The scaling introduced in Eqs.~2.1!–~2.4! should also
allow us to obtain similar asymptotic results for attracti
potentials. In any case, it is of interest to speculate that
large but finiteD, there are, universally, first order transition
of uniform classical fluids.
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